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FIGURE 1. Piperidine iminosugars.

SCHEME 1. Retrosynthesis of 3, ent-3, and 4
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substituted piperidine iminosugadsent-3, and4. It is interest-
ing to note that such type of piperidine system (ad)iis present
in the microbial metabolit®, which is a potent and selective
inhibitor of bacterial tyrosyl tRNA synthetases (YRS) (see
Figure 1)8

In general, introduction of hydroxyalkyl moiety at the carbon
atom of the piperidine ring skeleton is difficult; however, we
thought of utilizing carbon skeleton af-glucose to get the
required substituents while building the piperidine ring. Thus,
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SCHEME 2. Synthesis of 10
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free (C5) and other protected aldehyde (C1) functionalities, and
(iii) the suitably placed ethylamine side chain at C3, required
for building the piperidine ring skeleton. The masked symmetry
of A is apparent in theneseopen structure of the 1,2-acetonide
cleavage produdB wherein the C3 is achirotopic and stereo-
genic. The aldehyde functionalities on either side afford inherent
flexibility and could be manipulated elegantly to get the
enantiomeric pair of3. For example, first reduction of C5-
aldehyde functionality i\ will afford C that on 1,2-acetonide
removal and reductive aminocyclization with C1-aldehyde will
give 3. On the other hand, first reductive aminocyclization in
A with C5-aldehyde functionality to get piperidine ring skeleton
D and 1,2-acetonide removal following reduction of C1-
aldehyde will give an access &nt-3, whereas protection of
tertiary hydroxyl inD followed by acetonide removal, chopping
of the anomeric C1, and reduction will give Our results in
this direction are reported herein.

As shown in Scheme 2p-glucose was converted to the
known alcohob as reported earli€rDihydroxylation of6 using
catalytic amount of KOsQ-2H,O (5 mol %) and NMO as a
cooxidant afforded triol which was directly subjected to
oxidative cleavage using sodium metaperiodate to give aldehyde
7.10 Reductive amination of using benzylamine and sodium
cyanoborohydride in methanol followed by treatment with
benzyloxycarbonyl chloride and sodium bicarbonate in methanol-
water affordedN-Cbz protected amino alcoh@l'! Selective

the common intermediate to the target molecules is the synthetic5,6-acetonide deprotection &using 30% HCIQin THF under

equivalent of themesepentodialdoseB, namely 3€-(1'-
aminoethyl)e-D-ribo-pentodialdo-1,4-furanos, that could be
easily obtained from the-glucose (Scheme 1).

Attractive features of chiral templat are (i) the presence
of two differentially protected and stereochemically defined

controlled conditions gave tri@ that on treatment with sodium
metaperiodate affordeld-protected aminoaldehyded in good
yield.

While targeting the synthesis & (Scheme 3), the C5-
aldehyde group inOwas first reduced with sodium borohydride

hydroxylated C2 and C4 carbon atoms, (ii) the presence of oneto give N-protected aminoalcohdll. Removal of 1,2-acetonide

group with TFA-water (to free the C1-aldehyde) and subsequent

(8) (a) Stefanska, A. L.; Coates, N. J.; Mensah, L. M.; Pope, A. J.; Ready, reductive aminocyclization using ammonium formate and 10%

S. J.; Warr, S. RJ. Antibiot. 200Q 53, 345-350.(b) Walker, G.; Brown,
P.; Forrest, A. K.; O’Hanlon, P.; Pons, J. Recent Adances in the
Chemistry of Anti-infectie AgentsRoyal Society of Chemistry: London,
1993; p 106. (c) Houge-Frydrych, C. S. V.; Readshaw, S. A.; Bell, D. J.
Antibiot. 2000 53, 351-356. (d) Berge, J. M.; Broom, N. J. P.; Houge-
Frydrych, C. S. V.; Jarvest, R. L.; Mensah, L.; McNair, D. J.; O'Hanlon,
P. J.; Pope, A. J.; Rittenhouse, B.Antibiot 200Q 53, 1282-1292. (e)
Berge, J. M.; Copley, R. C. B.; Eggleston, D. S.; Hamprecht, D. W.; Jarvest,
R. L.; Mensah, L. M.; O’, Hanlon, P. J.; Pope, A.Bioorg. Med Chem
Lett 200Q 10, 1811-1814. (f) Berge, J. M.; Catherine, S. V.; Houge-
Frydrych, C. S. V.; Jarvest, R. . Chem Soc, Perkin Trans 1 2001, 20,
2521-2523.

(9) (a) Hotha, S.; Maurya, S. K.; Gurjar, M. Retrahedron Lett2005
46, 5329-5332.

(10) Compound is reported using different methodology, see: Pinheiro,
J. M.; Ismael, M. |.; Figueiredo, J. A.; Silva, A. M. S.Heterocycl Chem
2004 41, 877-882.

(11) TheH and3C NMR spectra of compound 9, 10, 11, 12, 13,
14, and15in which aN-Cbz group is present, showed doubling of signals.
This was due to restricted rotation around the GO bond, see: (a)
Applications of NMR Spectroscopy in Organic Chemisiackman, L. M.,
Sternhell, S., Eds.; Pergamon Press: Elmsford, NY, 1978; p 361.
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Pd/C in methanol at reflux afforded $349)-3,4-dihydroxy-4-
((R)-1,2-dihydroxyethyl)piperidine3) as a thick liquid. This
one-pot three-steps process involves hydrogenolysistmEnzyl
and N-Cbz groups to give insitu formation of primary amine
that concomitantly undergoes reductive aminocyclization with
Cl-aldehyde (equilibrium with hemiacetal) to gi8e

To achieve the synthesis a#nt-3, another strategy as

and hydroxymethyl functionalities at the-position of the
piperidine ring nitrogen to get new piperidine iminosugays
ent-3, and4. Another interesting aspect of present route is that
we have converted-glucose to enantiomeric pa®. Thus, a
single starting compound obtained franglucose has been used

to synthesize two enantiomers having several stereo-centers. The
new molecules are being studied for their inhibitory activity,
and the results will be published in due course.

Experimental Section

1,2:5,6-Di-O-isopropylidene-3-C-(1'-(N-benzyl-N-benzyloxy-
carbonyl)aminoethyl)-a-p-allo-1,4-furanose (8).To a solution of
benzyl amine (0.79 mL, 7.28 mmol) and glacial acetic acid (0.02
mL) in dry methanol (20 mL) was added a solution70£2.00 g,
6.62 mmol) in methanol (15 mL) over a period of 30 min-&20
°C and stirred for 1 h. Sodium cyanoborohydride (1.04 g, 16.55
mmol) was added in three portions (10 min), and the solution was
warmed to °C and stirred for 2 h. Reaction mixture was quenched
by adding saturated aq NaHG®olution. Methanol was removed
under reduced pressure, and the residue was extracted with
chloroform (25 mLx 3) and concentrated to afford crude amine.
To a solution of crude amine (2.60 g, 6.61 mmol) in methanol
water (25 mL, 9:1) at 6C was added sodium bicarbonate (1.66 g,
19.84 mmol) and benzyloxycarbonyl chloride (1.40 mL, 9.92
mmol). The reaction mixture was allowed to attain room temper-
ature and stirred for 3 h. Methanol was evaporated under reduced
pressure, and the residue was extracted with chloroform (25mL
3) and concentrated. Purification by column chromatography (
hexane/ethyl acetate 4/1) gave8 (2.90 g, 83% over two steps)
as a thick liquid: Re 0.50 (-hexane/ethyl acetate 2/3); [o]p?®
+11 (c 1.06, CHCY}); IR (CDClg) 3525 (br), 1697 cmt; 1H NMR
(300 MHz, CDC}) 6 1.10-2.10 (m, 14H), 2.67 (br s, 1H), 3.20
4.70 (m, 9H), 5.055.75 (m, 3H), 7.16-7.35 (m, 10H);*3C NMR
(75 MHz, CDC}) 6 25.3, 26.4, 26.6 (s), 30.0, 42.3, 51.1, 67.2,
67.7, 73.0, 78.3, 80.4, 82.1, 103.5, 109.4, 112.4, 127.3 (s), 127.6,

described in Scheme 1 was adopted. Thus as shown in Scheme27.8 (s), 128.1, 128.4 (s), 128.5 (s), 137.5 (s), 156.2. Anal. calcd

4, N-protected aminoaldehyd® was first subjected to reductive

aminocyclization (ammonium formate, 10% Pd/C, methanol at

reflux) to afford piperidine ring skeleton that on selectN«€bz
protection gave bicyclic oxapiperidiri® (85% yield over two
steps)? In the next step, hydrolysis of 1,2-acetonide functional-
ity in 12 with TFA-water and reduction of Cl-aldehyde with
sodium borohydride in THF-water yieldeN-Cbz protected
piperidinel3. In the final step, hydrogenolysis &8 using 10%
Pd/C in methanol at 80 psi affordedR34R)-3,4-dihydroxy-
4-((9-1,2-dihydroxyethyl)piperidineegnt-3) as a thick liquid.

For the synthesis of-hydroxymethyl substituted piperidine
4, it was necessary to protect the tertiary hydroxyl functionality.
Thus, treatment af2 with sodium hydride and benzyl bromide
in THF afforded benzylated produtt (Scheme 4). In the next
step, removal of 1,8-isopropylidene functionality ii4 with
TFA-water followed by oxidative cleavage of the resultant
hemiacetal with Nal@and subsequent reduction using sodium
borohydride gaveN-Cbz protected hydroxymethyl piperidine
15. Finally, hydrogenolysis of5 (ammonium formate and 10%
Pd/C, methanol reflux) afforded 3 49)-3,4-Dihydroxy-4-
hydroxymethyl piperidine4) as a thick liquid.

for CooH3/NOg: C, 66.02; H, 7.07; Found: C, 65.95; H, 7.00.
(3S,49)-3,4-Dihydroxy-4-((R)-1,2-dihydroxyethyl)piperidine
(3). A solution of 11 (0.10 g, 0.21 mmol) in TFAwater (2 mL,
3:1) was stirred fp3 h at 0°C. TFA was coevaporated with toluene
at reduced pressure to furnish a hemiacetal as a thick liquid. To a
solution of hemiacetal (0.09 g, 0.21 mmol) in dry methanol (5 mL)
was added 10% Pd/C (0.05 g) and ammonium formate (0.07 g,
1.09 mmol), and the reaction mixture was refluxed for 1 h. On
cooling, the reaction mixture was filtered through celite, washed
with methanol, and the solvent was evaporated at reduced pressure.
Purification by column chromatography (methanol) g&v¢.03
0, 87% over two steps) as a thick liquidR; 0.18 (25% aq Nk
OH/MeOH = 1/9); [a]p?® +12 (c 0.65, MeOH); IR (neat) 3600
2900 (br) cmt; IH NMR (300 MHz, D,O) 6 1.68-1.89 (m, 2H),
2.75-3.00 (m, 3H), 3.05 (ddJ = 14.1, 1.8 Hz, 1H), 3.61 (br s,
1H), 3.62 (dd,J = 11.1, 7.8 Hz, 1H), 3.72 (dd] = 7.8, 2.7 Hz,
1H), 3.85 (ddJ = 11.1, 2.7 Hz, 1H)33C NMR (75 MHz, D,0O) 6
28.5,39.7, 46.7, 61.2, 67.4, 72.3, 75.4. Anal. calcd fglNOy;
C, 47.45; H, 8.53; Found: C, 47.70; H, 8.85.
(2R,3R,3aR,7aR)-2,3-O-Isopropylidene-3a-hydroxy-6-(benzyl-
oxycarbonyl) octahydrofuro[2,3]pyridine (12). Reductive ami-
nocyclization of10 (0.10 g, 0.21 mmol), 10% Pd/C (0.05 g), and
ammonium formate (0.07 g, 1.09 mmol) in dry methanol (5 mL)

In conclusion, we have adroitly exploited the carbon skeleton as described fo8 afforded crude amine as a thick liquidR: 0.30

of p-glucose to introduce otherwise difficult 1,2-dihydroxyethyl

(12) While our work was in progress, Hanessian et al. have reported the

synthesis of 3a-methoxi-Bus bicyclic oxapiperidine, analogous to
compoundl?2, using different methodology, see: Loiseleur, O.; Ritson, D.;
Nina, M.; Crowley, P.; Wagner, T.; Hanessian JSOrg. Chem 2007, 72,
6353-6363.
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(chloroform/methanot= 1/1). SelectiveN-Cbz protection of amine
as described fo8 and purification by column chromatography (
hexane/ethyl acetate 9/1) gavel2 (0.065 g, 85% over two steps)
as a thick liquid: Rf 0.40 (-hexane/ethyl acetate 1/1); [a]p?®
+1 (c 10.0, CHCY); IR (neat) 3421, 1693 cm;H NMR (300 MHz,
CDCly) 6 1.35 (s, 3H), 1.461.78 (m, 2H), 1.55 (s, 3H), 1.80
2.60 (br s, 1H), 2.833.21 (m, 2H), 3.583.68 (m, 1H), 3.86



4.20 (br s, 2H), 4.344.56 (m, 1H), 5.08-5.23 (M, 2H), 5.72 (br
s, 1H), 7.36-7.42 (m, 5H);13C NMR (75 MHz, CDC}) 6 26.2
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thick oil. Treatment of hemiacetal with sodium metaperiodate as
described forl0 afforded an aldehyde as a thick liquié = 0.35

(s), 29.8, 38.6, 42.0, 66.8, 73.6, 74.4, 82.3, 103.2, 112.1, 127.2,(n-hexane/ethyl acetate= 4/1), which on subsequent sodium

127.4 (s), 128.0 (s), 136.2, 155.3. Anal. calcd fqgHGaNOg: C,
61.88; H, 6.64; Found: C, 62.04; H, 6.90.
(3R,4R)-3,4-Dihydroxy-4-((S)-1,2-dihydroxyethyl)-N-benzyl-
oxycarbonyl Piperidine (13).A solution 0f12 (0.10 g, 0.28 mmol)
in TFA—water (2 mL, 3:1) was stirred fa3 h at 0°C. TFA was
coevaporated with toluene to furnish a thick liquid. To an ice-cooled
solution of hemiacetal (0.08 g, 0.28 mmol) in THwater (4 mL,
4:1) was added sodium borohydride (0.01 g, 0.34 mmol) in two
portions and stirred for 30 min at . The reaction mixture was
guenched with saturated aq MEl solution. THF was evaporated
under reduced pressure, extracted with ethyl acetate (1&r8),
and concentrated. Purification by column chromatograpiy (
hexane/ethyl acetate 3/7) gavel3 (0.06 g, 70% over two steps)
as a thick liquid: Rf 0.25 (-hexane/ethyl acetate 0/10); [o]p?®
—24 (c 0.50, MeOH); IR (neat) 36062900 (br), 1691 cmt; H
NMR (300 MHz, D;0) 6 1.82 (br s, 2H), 2.973.20 (m, 1H), 3.24
3.42 (m, 1H), 3.66-3.80 (m, 3H), 3.824.15 (m, 3H), 5.16 (br s,
2H), 7.45 (br s, 5H)33C NMR (75 MHz, D,O) 6 28.5, 39.3, 46.3,

borohydride reduction as describe fi@and purification by column
chromatographyrthexane/ethyl acetate 4/1) gavel5 (0.23 g,
68% over three steps) as a thick liqui& 0.25 fr-hexane/ethyl
acetate= 1/1); [0]p%® —14 (c 2.30, CHCI,); IR (CH,Cl,) 3580—
2900 (br), 1691 cmt; *H NMR (300 MHz, CDC} + D,0O) 6 1.51—

1.92 (m, 2H), 3.06-4.20 (m, 7H), 4.324.55 (m, 2H), 5.18 (br s,
2H), 7.18-7.28 (m, 10H);3C NMR (75 MHz, CDC} + D;0) ¢
24.7, 39.2, 62.5, 63.2, 67.1, 71.2, 76.2, 127.0, 127.5 (s), 127.7,
128.2 (s), 136.3, 138.1, 156. Anal. calcd fosl8,sNOs: C, 67.91;

H, 6.78; Found: C, 68.10; H, 6.80.
(3R,49)-3,4-Dihydroxy-4-hydroxymethyl Piperidine (4). Reac-
tion of 15 (0.10 g, 0.26 mmol) with 10% Pd/C (0.05 g) and
ammonium formate (0.05 g, 0.80 mmol) in dry methanol (5 mL)
as described foB and purification by column chromatography
(methanol) gavel (0.03 g, 84%) as a thick liquidR: 0.20 (25%
aq NHOH/MeOH = 1/9); [0]p?® —19 (c 0.50, MeOH); IR (neat)
3590-2900 (br) cm®; *H NMR (300 MHz, D,O) 6 1.42-1.53
(br d,J = 14.4 Hz, 1H), 1.80 (ddd) = 14.4, 9.3, 5.7 Hz, 1H),

61.3,67.7,68.0, 72.6, 75.2, 127.9 (s), 128.5, 128.9 (s), 136.5, 157.4.2.74-2.90 (m, 3H), 3.07 (dd] = 13.8, 2.1 Hz, 1H), 3.52 (d] =

Anal. calcd for GsH,1NOg: C, 57.87; H, 6.80; Found: C, 58.16;

H, 7.04.
(3R,4R)-3,4-Dihydroxy-4-((S)-1,2-dihydroxyethyl)piperidine

(ent-3). To a solution 0f13 (0.08 g, 0.25 mmol) in dry methanol

(5 mL) was added 10% Pd/C (0.04 g), and the solution was

12.0 Hz, 1H), 3.65(br s, 1H), 3.68 (A= 12.0 Hz, 1H);**C NMR
(75 MHz, D,O) ¢ 28.9, 40.1, 46.9, 65.4, 68.3, 72.0. Anal. calcd
for CgH13NOs: C, 48.97; H, 8.90; Found: C, 49.17; H, 9.11.
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